

Macro Placement by Wire-Mask-Guided Black-Box Optimization

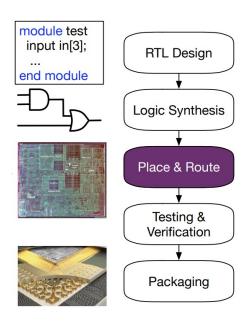
Yunqi Shi, Ke Xue, Lei Song, and Chao Qian*

School of Artificial Intelligence Nanjing University, China

Advances in Neural Information Processing Systems 36 (NeurIPS'23)

Why we are the best?

The problem we solve



Macro Placement

A vital stage in chip design

The baselines we beat

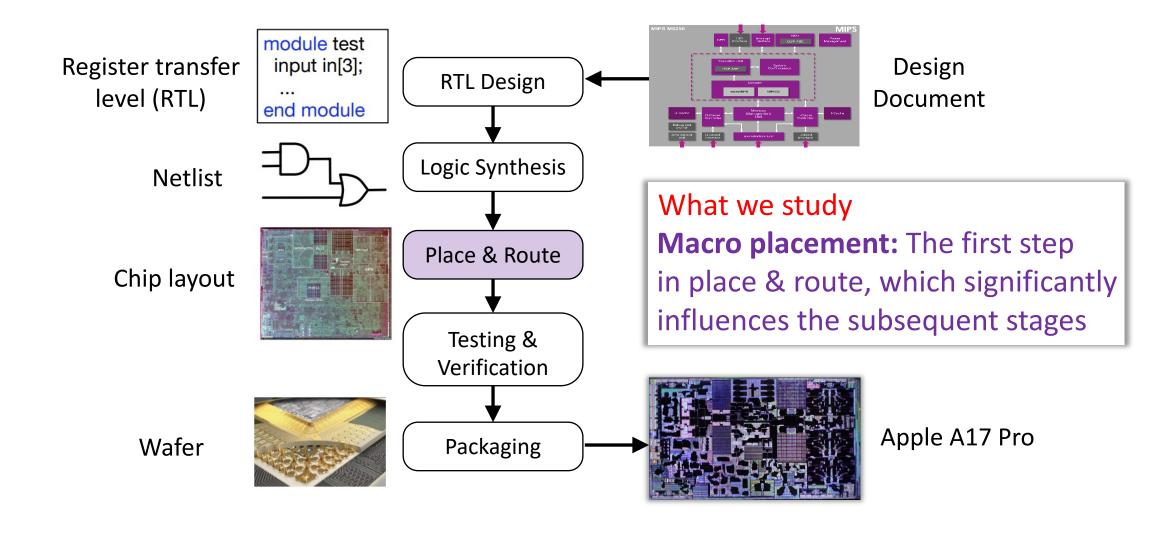
TCAD, DAC best paper

Significant improvement

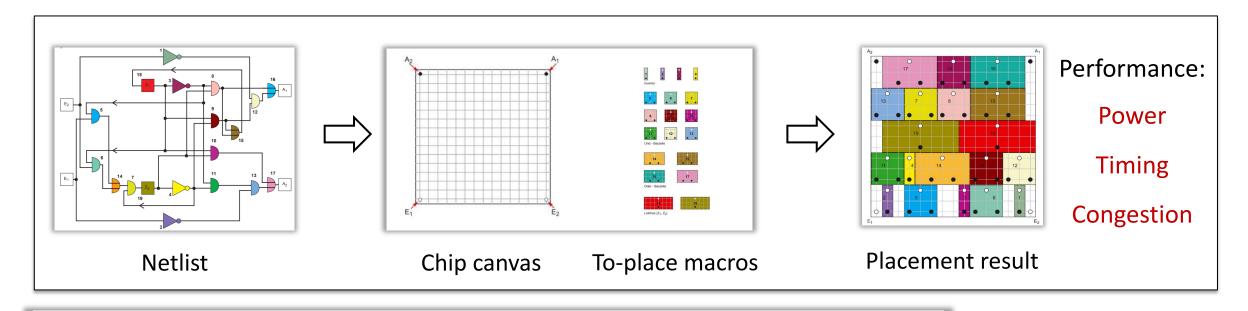
(e.g., 80% wirelength improvement over [Google, Nature'21])

The contributions to community

- Bring EAs back to the state-ofthe-art for macro placement
- Reaffirm the potential of EAs for chip design



Macro placement

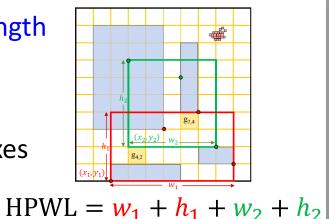


Minimization objective: Half Perimeter Wire Length

$$HPWL(s, H) = \sum_{e_j \in E} (w_j + h_j)$$

Sum of the half perimeter of nets' bounding boxes

Non-differentiable!

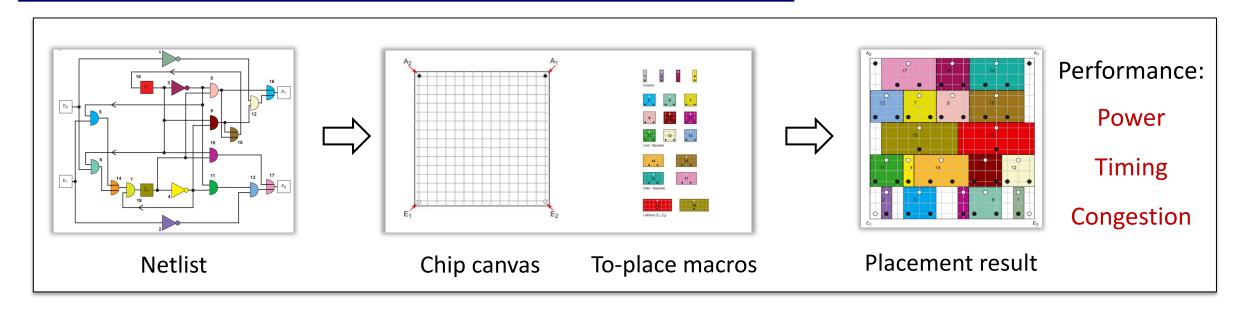


Constraint:

No-overlapping

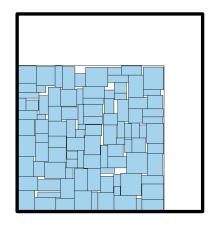
High-dimensional:

Thousands of macros



Human experts spend weeks for macro placement, owing to the very large number of macros to be placed and their complex connections

Design efficient algorithms producing better placement than human experts



Classical EAs 1980s-2000s

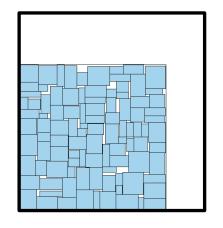
- Packing-based solution representation
- Optimize by Evolutionary Algorithms (EAs)

 \mathbf{m} : number of macros

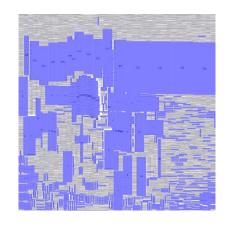
- $O(m^2)$ complexity for mapping [Murata et al., TCAD'96]
- Final performance heavily relies on the initial placement
- Low-efficiency and low-scalability

"... it is very slow and difficult to parallelize, thereby failing to scale to the increasingly large and complex circuits of the 1990s and beyond." [Google, Nature'21]

Previous methods

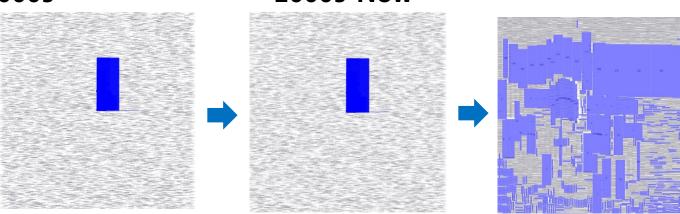


Classical EAs 1980s-2000s

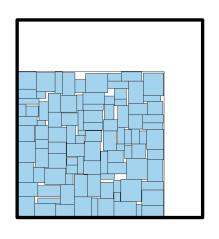


Analytical Placers 2000s-Now

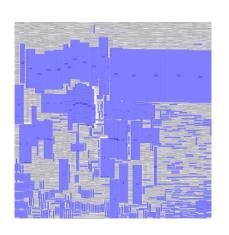
- Optimize by gradient descent
- Overlapping
- Get stuck in local optima



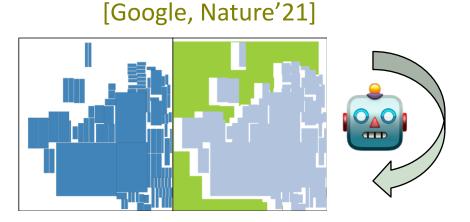
Previous methods



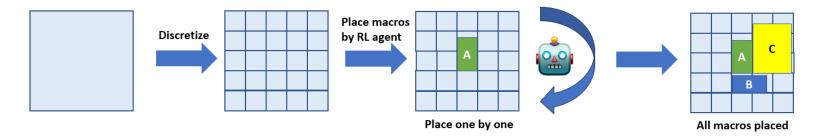
Classical EAs 1980s-2000s



Analytical Placers
2000s-Now

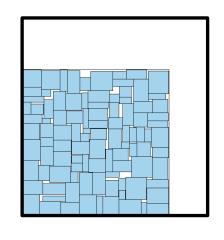


Reinforcement Learning Methods 2021-Now

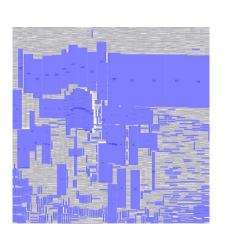


- Markov Decision Process
- Long training time
- Poor exploration

Previous methods

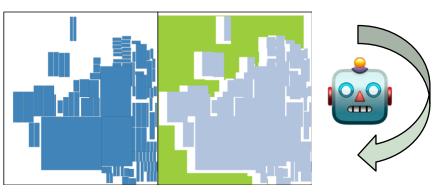


Classical EAs 1980s-2000s



Analytical Placers 2000s-Now

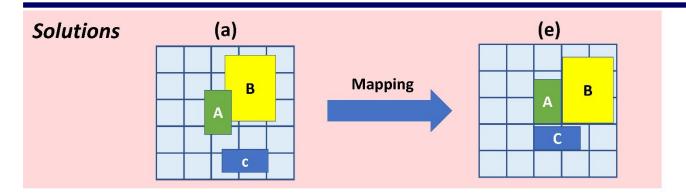
[Google, Nature'21]



Reinforcement Learning Methods 2021-Now

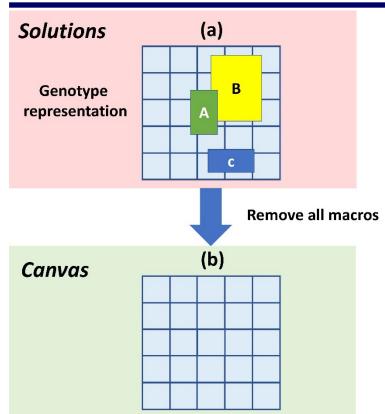
We propose a genotype-phenotype mapping inspired by RL formulation

Bring EAs back to the state-of-the-art!

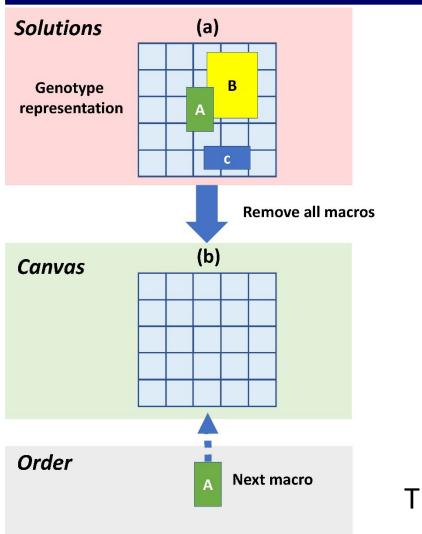


Genotype representation

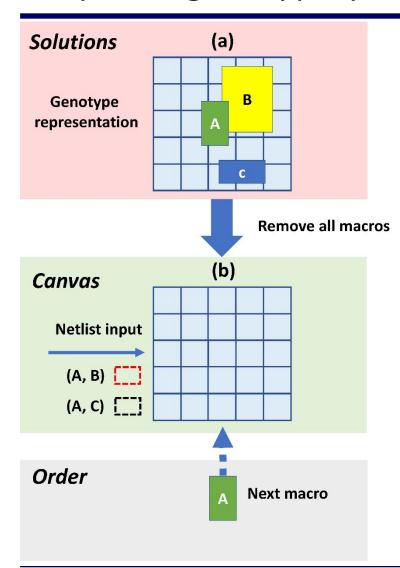
Phenotype representation



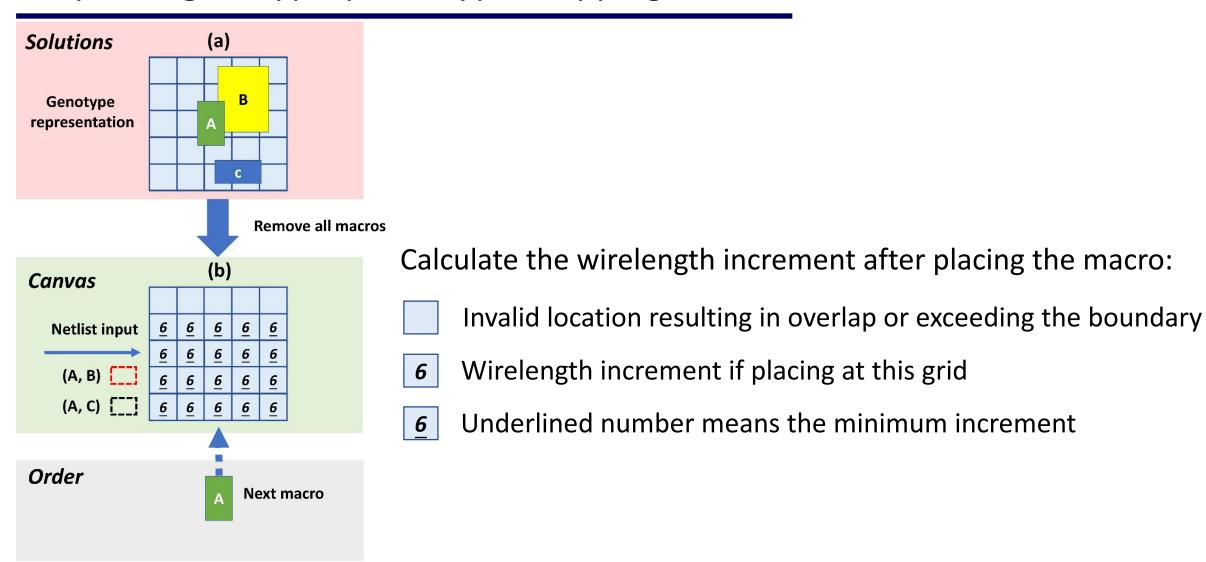
Partition the chip canvas into discrete grids

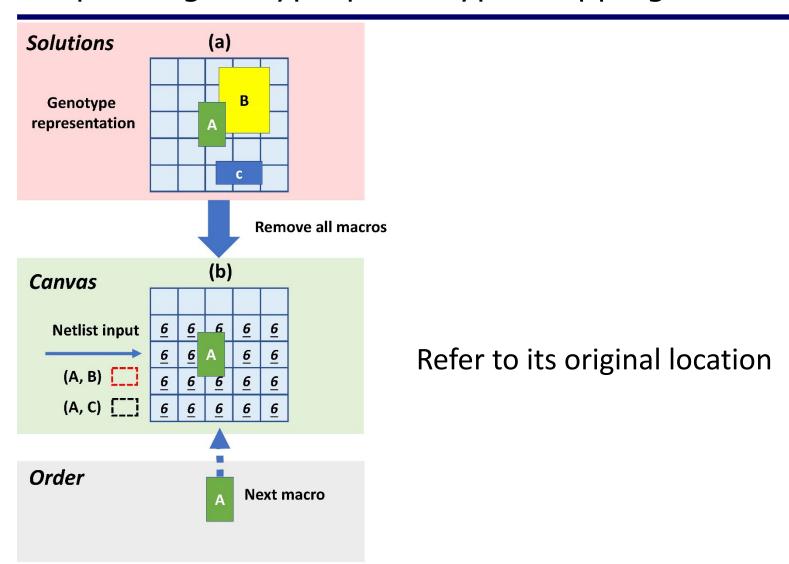


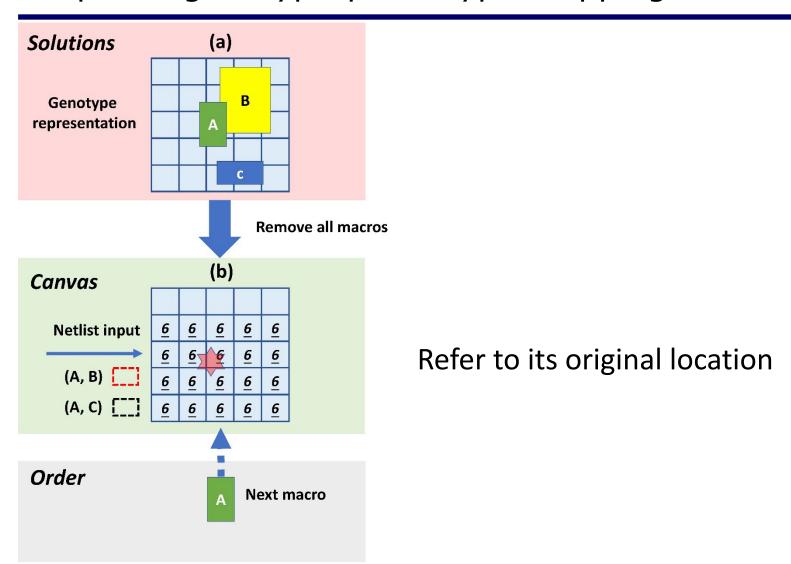
The first macro to place

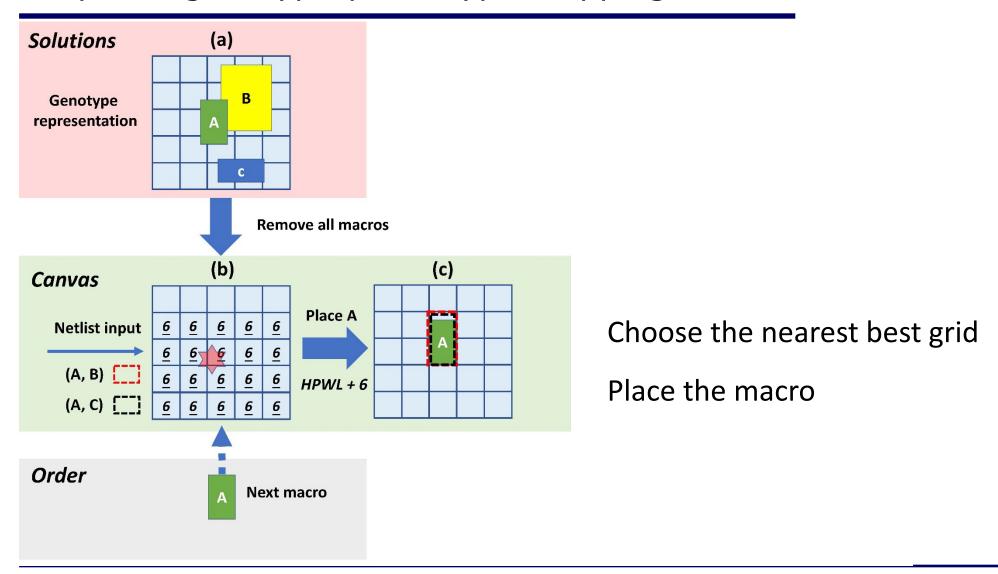


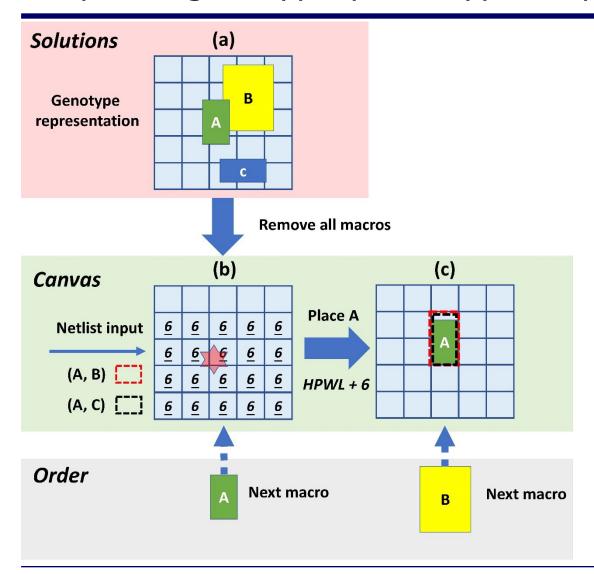
The input netlist indicates connection relationships



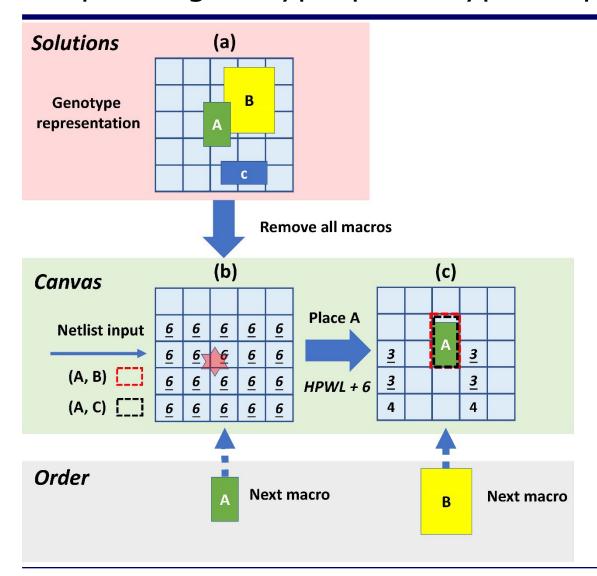




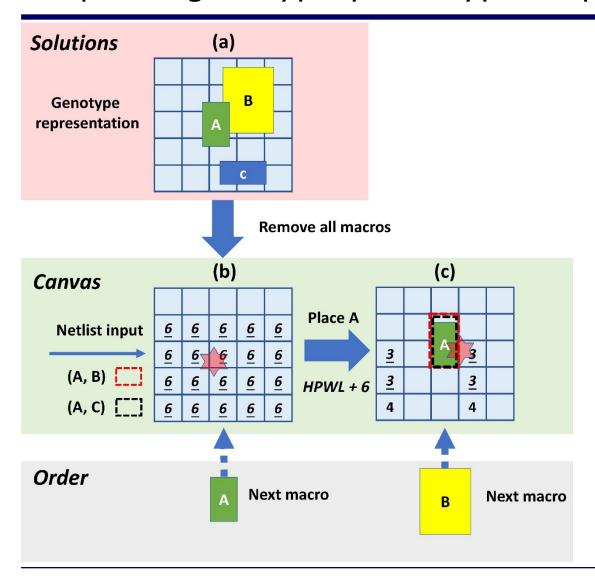




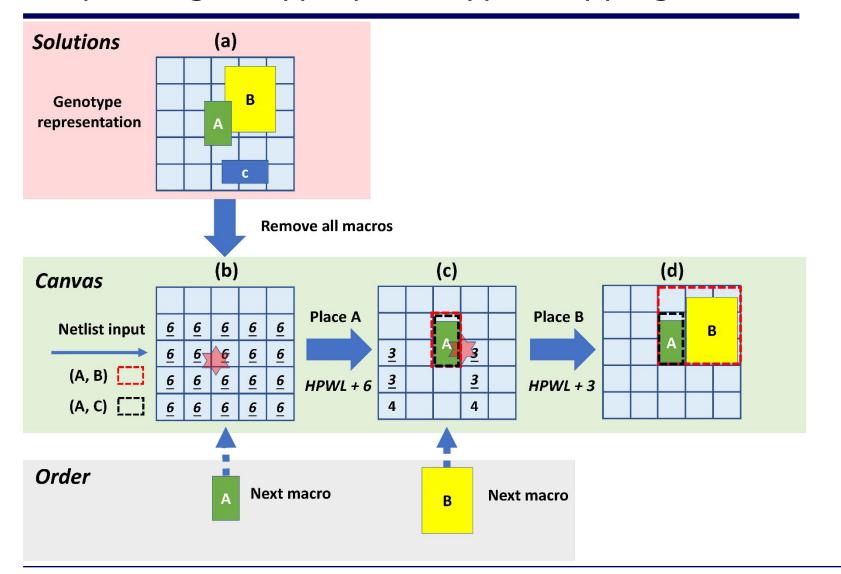
The second macro to place



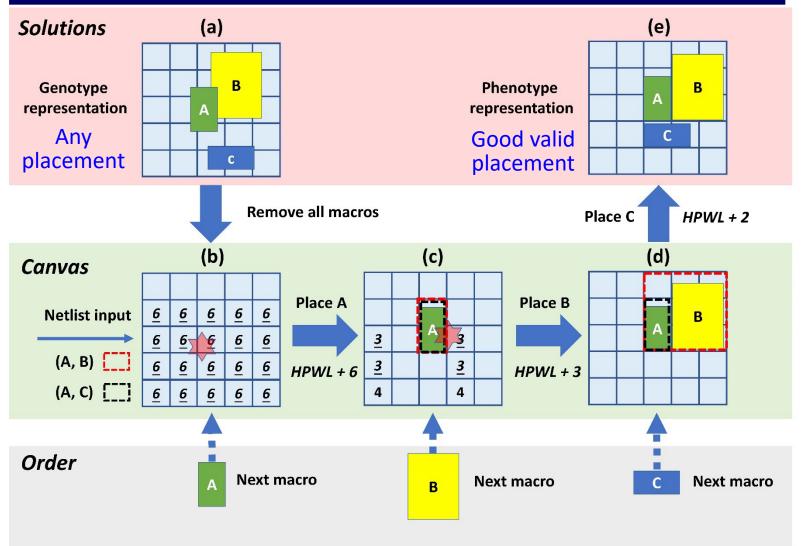
Calculate the wirelength increment after placing the macro at each grid



Refer to its original location



Choose the nearest best grid
Place the macro

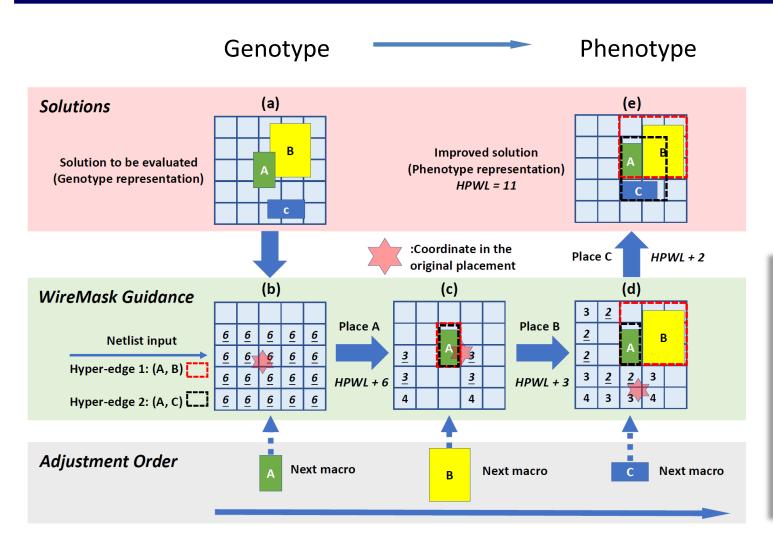


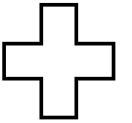
Place macro C similarly

Obtain the valid phenotype placement result

A greedy mapping based on the increment of wirelength

Improve the efficiency





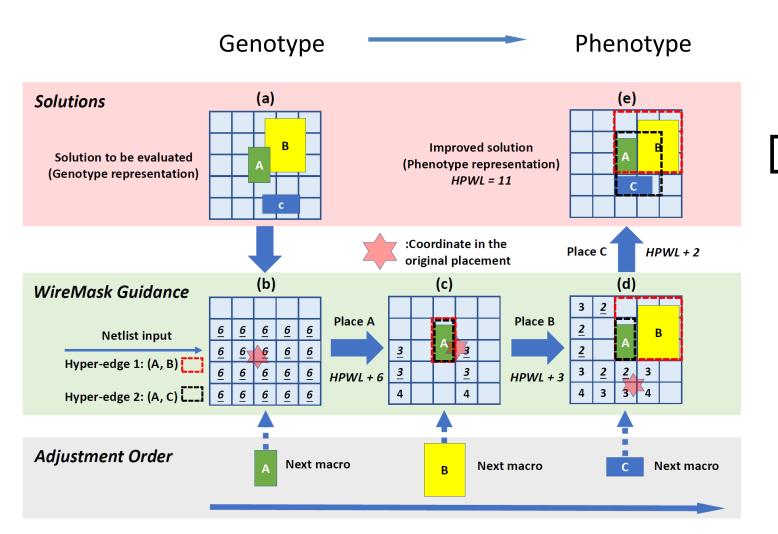
Evolutionary Algorithm

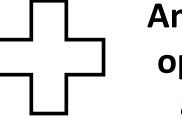
(1+1)-EA

- Initialization: Randomly generate 100 genotype solutions and pick the best
- Mutation: Randomly exchange two macros' locations

Already performs well!

Optimization based on proposed mapping





Any black-box optimization algorithm

(1+1)-EA

Bayesian optimization

Random search

Comparison with previous SOTA methods

Table 1: Wirelength ($\times 10^5$) obtained by ten compared methods on seven popular ISPD contest chips.

Classical EA	Method	Type	adaptec1	adaptec2	adaptec3	adaptec4	bigblue1	bigblue3	bigblue4 (×10 ⁷)	+/-/≈	Avg. Rank
method	SP-SA [33]	Packing	18.84 ± 4.62	117.36 ± 8.73	115.48 ± 7.56	120.03 ± 4.25	5.12 ± 1.43	164.70 ± 19.55	25.49 ± 2.73	0/7/0	6.86
	NTUPlace3 [12]	Analytical	26.62	321.17	328.44	462.93	22.85	455.53	48.38	0/7/0	9.00
Analytical	RePlace [13]	Analytical	16.19 ± 2.10	153.26 ± 29.01	111.21 ± 11.69	37.64 ± 1.05	2.45 ± 0.06	119.84 ± 34.43	11.80 ± 0.73	1/6/0	5.28
,, ,	DREAMPlace [28]	Analytical	15.81 ± 1.64	140.79 ± 26.73	121.94 ± 25.05	37.41 ± 0.87	2.44 ± 0.06	107.19 ± 29.91	12.29 ± 1.64	1/6/0	4.86
	Graph [32]	RL	30.10 ± 2.98	351.71 ± 38.20	358.18 ± 13.95	151.42 ± 9.72	10.58 ± 1.29	357.48 ± 47.83	53.35 ± 4.06	0/7/0	9.00
RL	DeepPR [15]	RL	19.91 ± 2.13	203.51 ± 6.27	347.16 ± 4.32	311.86 ± 56.74	23.33 ± 3.65	430.48 ± 12.18	68.30 ± 4.44	0/7/0	8.86
	MaskPlace [26]	RL	6.38 ± 0.35	73.75 ± 6.35	84.44 ± 3.60	79.21 ± 0.65	2.39 ± 0.05	91.11 ± 7.83	11.07 ± 0.90	0/7/0	4.28
Our	WireMask-RS	Ours	6.13 ± 0.05	59.28 ± 1.48	60.60 ± 0.45	62.06 ± 0.22	2.19 ± 0.01	62.58 ± 2.07	8.20 ± 0.17	0/5/2	2.57
	- WireMask-BO	Ours	6.07 ± 0.14	59.17 ± 3.94	61.00 ± 2.08	63.86 ± 1.01	2.14 ± 0.03	67.48 ± 6.49	8.62 ± 0.18	0/3/4	2.86
methods	WireMask-EA	Ours	5.91 ± 0.07	52.63 ± 2.23	57.75 ± 1.16	58.79 ± 1.02	2.12 ± 0.01	59.87 ± 3.40	8.28 ± 0.25		1.43

[Google, Nature'21]

- Some important
- Graph [Nature'21]: RL method proposed by Google
- tant DREAMPlace [DAC'19, TCAD'21 Best Paper] : One of the most popular analytical methods
- baselines DeepPR [NeurIPS'21] and MaskPlace [NeurIPS'22]: Two recent advanced RL methods

WireMask-EA (our proposed framework equipped with EA) achieves the best average rank, and reduces wirelength by 80% compared to [Google, Nature'21]

Comparison with the latest method ChiPFormer [Lai et al., ICML'23]

Table 2: Wirelength ($\times 10^5$) Compared with ChiPFormer on ten popular ISPD and ICCAD contest chips.

Benchmark	ChiPFormer (1)	WireMask-EA (1)	ChiPFormer (0.3k)	Wi	reMask-EA (0.3k)	ChiPFormer (2k)	WireMask-EA (2k)
adaptec1	8.87 ± 0.98	7.20 ± 0.34	7.02 ± 0.11		6.29 ± 0.07	6.62 ± 0.05	5.96 ± 0.08
adaptec2	122.37 ± 22.61	111.04 ± 20.09	70.42 ± 2.67		61.25 ± 4.10	67.10 ± 5.46	53.88 ± 2.53
adaptec3	107.11 ± 8.84	75.37 ± 2.93	78.32 ± 2.03		64.49 ± 1.69	76.70 ± 1.15	59.26 ± 1.30
adaptec4	85.63 ± 7.52	75.63 ± 1.30	69.42 ± 0.54		64.52 ± 1.81	68.80 ± 1.59	59.52 ± 1.71
bigblue1	3.11 ± 0.03	2.31 ± 0.06	2.96 ± 0.04		2.18 ± 0.01	2.95 ± 0.04	2.14 ± 0.01
bigblue3	131.78 ± 17.36	99.20 ± 24.69	81.48 ± 4.83		64.51 ± 4.15	72.92 ± 2.56	56.65 ± 2.81
ibm01	4.57 ± 0.27	3.76 ± 0.36	3.61 ± 0.08		2.92 ± 0.07	3.05 ± 0.11	2.39 ± 0.07
ibm02	6.01 ± 0.41	5.13 ± 0.16	4.84 ± 0.17		3.86 ± 0.03	4.24 ± 0.25	3.56 ± 0.05
ibm03	2.15 ± 0.17	3.10 ± 0.12	1.75 ± 0.07		2.20 ± 0.11	1.64 ± 0.06	1.69 ± 0.11
ibm04	5.00 ± 0.14	3.60 ± 0.17	4.19 ± 0.11		2.93 ± 0.11	4.06 ± 0.13	2.62 ± 0.04

WireMask-EA outperforms ChiPFormer [Lai et al., ICML'23] on 9 out of 10 chips, using the same number of evaluations

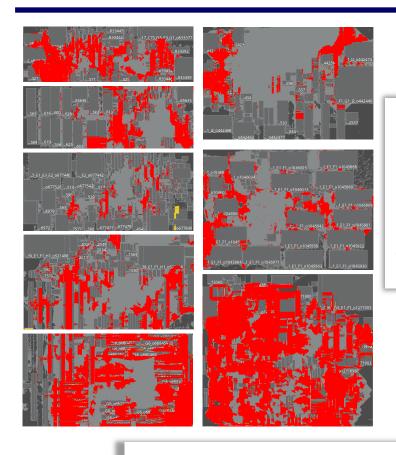
circuit	method	Tim	ing	NVP ¹	Congestion	
		WNS/ps	TNS/ns		H/%	V/%
C1	Human	204	57.1	2569	0.06	0.38
	MaskPlace	161	42.7	1964	0.07	0.07
	ChiPFormer	142	19.4	1636	0.04	0.07
C2	Human	403	492.2	11360	0.63	2.05
	MaskPlace	242	259.1	9710	0.57	1.67
	ChiPFormer	177	224.9	8110	0.53	1.27
C3	Human	102	91.9	5614	1.02	0.85
	MaskPlace	116	92.8	5559	1.05	0.87
	ChiPFormer	108	91.2	5452	1.02	0.82
	Human	399	438.0	13925	0.97	0.34
C4	MaskPlace	389	324.2	12582	0.68	0.34
	ChiPFormer	248	266.0	12398	0.62	0.34
C5	Human	89	10.8	2675	0.02	0.07
	MaskPlace	122	32.2	2975	0.02	0.22
	ChiPFormer	80	4.9	1706	0.02	0.04
C6	Human	154	137.4	6833	0.70	0.22
	MaskPlace	81	49.6	7040	0.77	0.26
	ChiPFormer	78	38.1	6412	0.63	0.22

Experiments on **private industry chip cases:**

ChiPFormer **outperforms** human experts (who place the macros with the help of commercial tool *Candence Innovus*)

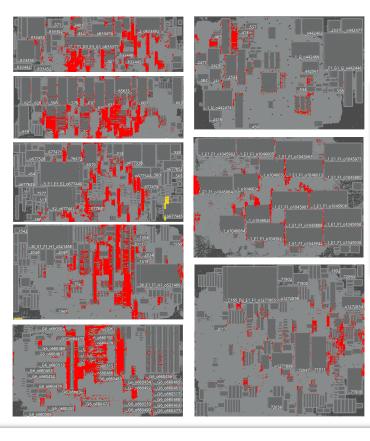
WireMask-EA > ChiPFormer > Human expert

[Lai et al., ICML'23]



Most popular analytical placer DAC'19 Best Paper TCAD'21 Best Paper

DREAMPlace



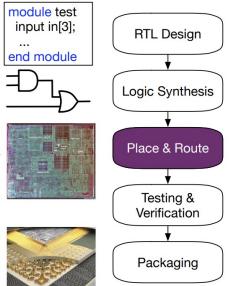
WireMask-EA

Our proposed framework equipped with **EA**

Red points in the figure represent congestion points that can't be routed

Our results have much fewer red points, showing better routability and performance

Why we are the best?



Macro Placement

A vital stage in chip design

The baselines we beat

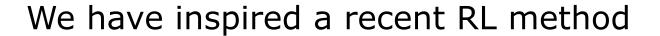
TCAD, DAC best paper

Significant improvement

(e.g., 80% wirelength improvement over [Google, Nature'21])

The contributions to community

- Bring EAs back to the state-ofthe-art for macro placement
- Reaffirm the potential of EAs for chip design



Reinforcement Learning within Tree Search for Fast Macro Placement

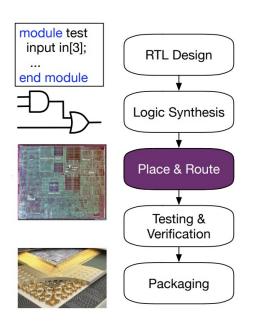
[Geng et al., ICML'24]

Shi, Y., Xue, K., Song, L., and Qian, C. Macro placement by wire-mask-guided black-box optimization. In *Thirtyseventh Conference on Neural Information Processing Systems*, 2023. Wiremask for Reducing Search Space The concept of wiremask was introduced by Lai et al. (2022) as the visual inputs to the neural networks. Shi et al. (2023) then employed wiremask to devise a greedy policy to guide the BBO algorithms. Similar to them, we restrict actions to the grid areas with the minimal HPWL increment, which narrows down the search space, thereby significantly enhancing the training efficiency and the placement quality.

Inspired by our work, **EfficientPlace** chooses the action **from the feasible grids with minimum wirelength increment**, **originated from our genotype-phenotype mapping**, enhancing RL searching

Why we are the best?

The problem we solve



Macro Placement

A vital stage in chip design

The baselines we beat

TCAD, DAC best paper

Significant improvement

(e.g., 80% wirelength improvement over [Google, Nature'21])

The contributions to community

- Bring EAs back to the state-ofthe-art for macro placement
- Reaffirm the potential of EAs for chip design

We are working on

 Benchmark chip design cases as real-world problems for EAs

Thanks for listening!